Через 7 дней Громыковские люди будут жить при коммунизме
Сергей Михайлов: Я думаю, что революционными методами нельзя
изучить ни язык (родной или иностранный), ни математику. Это как читать Достоевского
в 8 классе, прочитать Достоевского в комиксах, прочитать полит-корректного Достоевского
(то есть без ударов по голове), прочитать Достоевского в 30 лет и 60 лет.
ГО: И можно еще сотню таких "аргументов" привести,
да вот ведь штука!.. Правомочность примера, - его схожесть в самой сути с обсуждаемым
предметом, - вот что необходимо хоть как-то показать (я не говорю "доказать", -
это невозможно), но хотя бы приблизительно обозначить.
И когда мы говорим "изучить язык" или "изучить математику", тогда мы говорим
вовсе не о том, для чего предназначена технология "вся школьная математика - за
7 дней". Я понимаю! что слоган "вся школьная математика - за 7 дней" красив, но
не точен. Он рассчитан на внешнего наблюдателя, - например, на родителя. А для "внутреннего"
участника создания технологии смысл слогана другой.
Смысл слогана "вся школьная математика - за 7 дней" в том, чтобы за семь дней
человек оснастил себя средствами работы, которые позволяют ему не только разбираться
в математике, но которые позволяют ему также и эти уже освоенные средства работы
расширять дальше. Но это - уже за пределами семи дней.
В таком залоге говорить об изучении чего бы то ни было, - чистый
бред! А если сказать без "!", то с употреблением глагола "изучать" происходит некорректная
подмена, после которой приведенные выше "аргументы" выглядят весьма солидно.
Если же обратиться не к математике, а к человеку, который учится математикой
владеть, жить в ее пространстве, пользоваться ею, - в этом случае можно обнаружить
довольно скудный набор навыков, необходимых и достаточных, чтобы безбедно жить в
пространстве математики. Вот тут уместен пример с тренировкой на выживаемость в
тайге, - в ней тоже набор навыков для выживания очень короткий, хотя сама тайга
очень большая.
Сергей Михайлов: Математика, это не только структура (объекты),
но и связи между объектами. Известно, что "структура + связи" не равно
"структура и связи", поскольку объединение объектов в систему дает системный
выигрыш.
ГО: Мы всем этим в отведенные 7 дней не занимаемся!
Мы тренируем навыки (слова "способности" я избегаю) различать структуру и выявлять
связи.
Как объяснить родителям, за что они деньги платят? Ведь эти самые родители:
а) родители не собираются в математике чего-нибудь мыслить, - им не до нее.
б) у родителей перед глазами нет тех сотен и тысяч людей, которые уже прошли
сквозь эти 7 дней и теперь прыгают от восторга.
В этой ситуации мы сочиняем некоторый текст, который пока что выглядит вот так:
В математике на первом месте стоят не знания, но навыки и способности обращаться
со знаками и формулами. Какие навыки для этого необходимы? Чтобы успешно учиться
по математике и иметь только хорошие отметки, необходимо и достаточно, если ученик:
Понимает, что говорит учитель на уроке
Не только умеет обращаться с калькулятором, но и устно считает превосходно
В тетради по математике пишет красиво и четко
Логически рассуждает и доказывает
Легко превращает текст в уравнения
Имеет глазомер и чертит хорошо
Легко обращается со справочником по математике
Эти навыки Вам и всем нам практически покажет Ваш ребенок после семи дней занятий
во время специального заключительного открытого урока
ГО: У кого есть чего-нибудь добавить, - премного
благодарен за идеи и частные дополнения
Сергей Михайлов: Есть вещи, которые поймешь только через
несколько лет после того, как прочитаешь.
ГО: Во! Держи его! Лови его сейчас! А то убежит! В
самом деле, "после того, как прочитаешь", бывают нужны годы. А вот в процессе тренировки
понимаешь так много, во что и через годы после чтения, возможно, не въедешь. Норбекова
не читаем? А зря...
Сергей Михайлов: Причем Норбеков? :) Ну ладно. Например, нельзя
сразу понять роторы. А есть вещи которые и не поймешь┘ например, тензоры.
ГО: Норбеков причем? Да он простую вещь ведь объясняет
людям, - вместо того, чтобы думать об этом, проще и эффективнее это делать. Вместо
того, чтобы думать "смех продляет жизнь", лучше просто, - вот теперь можете??!!
- улыбнуться.
ГО: Что же до роторов и тензоров, то они ничуть не
сложнее квадратного корня. Это все та же привычка математиков записывать длинные
"рассказы про это" в виде коротких сокращений. Я уже говорил много раз, что "вся
математика есть набор сокращений" и ничего больше.
Вопрос с роторами и тензорами лишь в том, какие навыки нужно натренировать, чтобы
с ними обращаться столь же непринужденно, как с квадратным корнем. Мы не занимаемся
в эти 7 дней никаким пониманием! Алле! Пониманием занимаются учителя в школе (за
исключением Шаталова и его последователей).
Сергей Михайлов: То есть вы занимаетесь тезаурусом? Или правописанием?
Научился рисовать значок интеграла, значит изучил. Хм. Я, например, могу срисовывать
картины с фотографической точностью, значит я художник? Научился вырисовывать буквы
иностранного языка - значит, умею писать. Ну. Ну. Я думаю, что обладать математическим
мышлением - это уметь экстраполировать знания. Например, знать, что за 1,2,3,4
будет следовать 5,6,7. А не знать как написать правильно значок дифференциала.
ГО: Вот и чудесненько! Сергей Михайлов берет этот блок,
- который он сам и назвал, - "экстраполяция знания", делает по нему опорный
лист и к нему подбирает тренировочные примеры. Примеры подбирает с таким прицелом,
чтобы ученики "по аналогии" могли сами создавать такие примеры дальше друг для друга.
Ага?
Сергей Михайлов: Здорово, вы сударь распределили обязанности!
Лучше людям, желающим понять, что такое экстраполяция знаний, я сошлюсь на статьи
Германа Веля или Арни Пуанкаре. Думаю, в сети найти можно, правда, я сам читал книжки
этих авторов в бумажном варианте. Учтите, что поймете смысл только с пятого прочтения.
ГО: За себя не скажу, но знаю лишь, что "это - как
кому". У Талькова в одной из песен есть такой припев "ну, это как кому!". А сама
по себе экстраполяция знания тренируема вполне простыми упражнениями. Чтобы сделать
подборку таких упражнений, вовсе не нужно читать указанные статьи. Но я бы хотел
еще задержаться на вот какой Вашей мысли, сэр...
Сергей Михайлов: Я думаю, что обладать математическим мышлением
- это уметь экстраполировать знания
ГО: Миф о каком-то особом типе мышления - очень вредный
для детей миф. Не существует такого мышления. Обосновать это не сложно. Выделенные
нами ( ╘ мной - ГО) виды навыков - "владеть архитектурой формул,
доказывать, преобразовывать текст-формула-схема, конструировать и измерять" , -
в том числе и "экстраполировать", - все эти навыки нужны не только в математике.
И тренировать их можно на любом материале. Можно на материале математики, а можно
на материале химии или на языковом материале.
Эту простую мысль уже подтвердили наши читатели, - коллеги по кооперативу "М7",
- когда практически сразу же заметили, что по аналогии можно тренировать химию,
географию, русский язык и прочие "предметы". Читатели как-то легко обнаружили всеядность
технологии, - она у них просто не вызвала никакого сомнения.
Поэтому можно говорить о том, что логику можно тренировать на материале математики.
Но то же самое можно говорить и об истории, и о медицине, - о чем угодно. Никому
ведь не приходит в голову говорить о "медицинском" мышлении! И вообще о каком таком
мышлении можно вести речь, если математика есть всего лишь условный язык сокращений?
Ну, да оставим эту тему... Мы слишком увлеклись.
Сергей Михайлов: Возвратимся к революционным методам познания.
Конечно, можно возразить "ты, друг, сам говоришь в своих проектах о скорочтении
Скорочтение , которое учит
воспринимать мгновенно (почти как в математике за 7 дней)". Но в скорочтении речь
идет о другом √ о свертывании информации.
ГО: ┘ Математика, как язык условных сокращений, то же самое.
В скорочтении можно быстро и правильно поставить тренировочный процесс. Можно научить
человека верно тренироваться. А уже потом, после этого, - в нашем случае, за рамками
семи дней, - он будет тренироваться так, как его научили (правильно), и получит
результат любого качества. Аналогично и в нашем случае с математикой.
Сергей Михайлов: Об революционном. Смотрю я на свое дитя
(возраст ребенка √ три года), которое половину букв не выговаривает, и думаю "как
тебя научить английскому за раз?" Хммм... Тут задача стоит "начать говорить по-русски"
:) ). Начинаю с ней говорить по-английски, а она - "мама! папа со мной балуется!"
;)
ГО: Ну, так что? Прямо тут ответ давать? Или как? Все
педагоги кричат в один голос, что "чем меньше дитя, тем легче ему взять иняз!",
а Михайлов жалуется... Чем его утешим?
Сергей Михайлов: Зачем ссылаться на абстрактных педагогов.
Вы сударь в Германии живете. Семья ваша двуязычная. А на скольких языках говорит
дите свободно? Жена немка или русскоязычная? Не верю, что ребенок свободно говорит
на двух языках без акцента. Разочаруйте меня. Думаю, в вашем случае говорить без
акцента это то же самое, что научить мне говорить, поскольку в вашем случае человек
погружен в две языковые среды.
ГО: Жена русскоязычная. А дети, - сын 9 и дочь 11,
- оба хорошо говорят по-русски, но родной язык у них немецкий. Но и в немецком у
них большой пробел в словарном запасе в той части, которой люди пользуются в семье,
дома... А в русском у них вообще "пробел" в словарном запасе огромен, - только самые
обиходные слова. Часто они слышат простое слово, - вот вчера говорю сыну "зачерпни
ложечкой", а он спрашивает "зачерпни - это что?", - и спрашивают "а что это слово
значит?".
Сергей Михайлов: Ну, вот видишь. А то говоришь, легче учить язык с трех
лет. Человек воспринимает то, что есть, и если ему говорить хау ду ю ду и при этом
не подкреплять на практике, то ничего не получится, да и практика должна быть настоящая.
Почему бы к детям не применить революционные методы? Неужели не заговорят (на
немецком, русском, математическом)? Нет, не заговорят до тех пор, пока не будет
у них желания.
ГО: Но мы отвлеклись от темы "вся школьная математика - за 7 дней".
Сергей Михайлов: Совсем нет. И там и там пробуются революционные методы.
ГО: Отнюдь, граф, отнюдь, - "М7" не содержит в себе ничего
революционного. Уместно сейчас вспомнить, что тренировочная группа в технологии
"вся школьная математика - за 7 дней" работает в парном режиме, то есть ученики
тренируют друг друга в парах. Только одно это позволяет получить совершенно фантастические
результаты. Я как раз теперь подбираю материал и пишу алгоритмы работы пар.
Для тех наших читателей, который вызвались кооперироваться,
приведу здесь несколько возможностей для соучастия на Ваш вкус и выбор выглядит
это так. По каждому навыку, - а это как раз всякие там "экстраполяции", "логика",
"чистописание", - делаем комплект, состоящий из:
Опорного листа
Лекции к нему
Тренировочных примеров для тренировки навыка
Алгоритмов работы пары учеников
Листа учета сделанных тренировок
Ну, может быть, чего-то еще... Пока надо наладить
производство вот этих блоков. Ведущей идеей является "никакой математики - только
навыки", которые нужны человеку для жизни в математике. Блоки могут быть только
про навыки! Про математику - ни слова!
Прошу не понимать все слишком буквально. Мы сейчас в поиске. В повестке дня обсуждения
"а что такое алгоритм работы пары учеников" - это важная часть технологии. Пока
же давайте сделаем несколько комплектов и попробуем их практически. Желающих присоединиться
прошу.
Подпишитесь на бесплатную рассылку
о скорочтении.
Вы получите серию писем, в которых будет демонстрироваться простые и понятные упржнения на освоение навыка скорочтения. Вы узнаете о том, как сделать апгрейт мозгов и наконец, начать быстро читать.